
C++ Programming

Updated on:
03 August 2015

First published on 3 July 2012
This is the 7th Revised edition

www.ecti.co.in

C++ Programming

DISCLAIMER

 The data in the tutorials is supposed to be one for
reference.

 We have made sure that maximum errors have been
rectified. Inspite of that, we (ECTI and the authors) take
no responsibility in any errors in the data.

 The programs given in the tutorials have been prepared
on, and for the IDE Microsoft Visual Studio 2013.

 To use the programs on any other IDE, some changes
might be required.

 The student must take note of that.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Procedure-Oriented Programming

 The procedure oriented language deals with a sequence
of processes to be done such as reading, calculating and
printing.

 The program is divided into functions to achieve
these tasks.

 In procedure oriented languages the main attention is
given to how to achieve a particular task and very less
attention is given to the data which is used by the
functions.

 If the data is required to be accessed by many functions
then it is declared as global. Global declarations are
more vulnerable as data can be changed by all the
functions.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Problems in the ‘C’ Language

 The data elements while programming in C are not
considered.

 Problem of analysing the UNIX Kernel with respect
to Distributed Systems.

 Lack of security for Networks.
 Data Categorisation not present.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Object Oriented Programming

 More emphasis is given on data rather than procedure.
 Programs are divided into objects.
 Classes are designed such that they characterize the

objects.
 The data and the functions that can operate on the data

are tied together.
 Data is hidden and cannot be accessed by external

functions.
 New data and functions can be added whenever

required.
 Follows bottom-up Design approach.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Introduction to C++

 C++ language was developed by Bjarne Strousstrup at
AT & T Bells Laboratories in early 1980’s.

 He thought of a language which can have object oriented
features as well as it can retain the simplicity of C
language.

 Initially the language was names as ‘C with classes’.

However, later in 1983 the name was changed to C++.
 C++ almost supports all the C functionalities with some

new functionalities like classes, inheritance, function
overloading, operator overloading. These features of
C++ enable creating abstract data types, inherit
properties from existing data types etc.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

First C++ Program

#include<iostream.h>
#include<conio.h>
void main()
{

cout << "Hello World!!!";
getch();

}

Output:

Hello World!!!

• #include<iostream.h>
instruction causes to add
iostream.h file to program
which contains the
declarations of the identifier
cout.

• cout (<<) is called as a Output
Operator which prints string to
the console.

Note: The header files should now
be added by the student.
Henceforth, no headers are
mentioned in the sample programs.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Class

class class_name
{

private:
variables;
functions;

public:
variables;
functions;

};

• The body of a class contains
variables and functions.

• A class defines the structure
and behavior (data and code)
that will be shared by a set of
objects.

• The purpose of class is to
encapsulate complexity, there
are mechanisms for hiding the
complexity of the
implementation inside the
class.

• The words private and public
are called as access
specifiers. By default the
access specifier is private in
C++.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Class Representation

Class : PERSON

DATA
name
address
……….

FUNCTIONS
getdata()
showdata()
……….

PERSON

getdata()

showdata()

………….

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Objects

class demo
{

int no1, no2, add;
public:
void getdata()
{

cout << "Enter 2 nos: " ;
cin >> no1 >> no2;

}
void sum()
{

add = no1 + no2;
}
void showdata()
{

cout << "Sum is: " << add;
}

};

void main()

{

demo obj;

obj.getdata();

obj.sum();

obj.showdata();

getch();

}

• Each object of a given class contains
the structure and behavior defined by
the class.

• Thus class is a logical
representation, where as object has
physical representation.

• The memory is always assigned to
object and not to a class.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Member Functions

Defining Function inside Class

class demo
{

int no1, no2, add;
public:
//inline function
void getdata() //inside
class function
{

cout << "Enter 2 nos: "
;

cin >> no1 >> no2;
}
void showdata()
{

cout << "Sum is: " <<
add;
}

};

Defining Function outside Class

class demo
{

int no1, no2, add;
public:
void getdata(); //prototype
declaration
void showdata()
{

cout << "Sum is: " <<
add;
}

};
void demo :: getdata()
{

cout << "Enter 2 nos: " ;
cin >> no1 >> no2;

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

 When you are defining a function outside a class you have to
incorporate membership ‘identity label’ in the header. The ‘identity

label’ tells the compiler which class the function belongs to.

return_type class_name :: function_name (arguments)
{

…………….;

…………….;

}

 Due to :: (scope resolution operator) the compiler understands the
function function_name is restricted to class_name.

 Due to membership label many classes can use same function
name.

 Member functions can access the private data of the class.
 Member function can call another member function without using dot

operator.

Defining Functions Outside Class

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Inline Functions

• When we call a function it
takes extra time to execute.

• To eliminate the cost of
calls to small functions
inline functions are used.

• An inline function is a
function which is
expanded in line when it
is invoked.

• The compiler replaces the
function call with the
corresponding function
code.

inline function_header
{

...............;

...............;

}

• The faster execution of
inline function diminishes
when the function grows in
size.

• Inline functions should be
between 1 to 2 lines.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Passing Object as a Parameter to Function

• You can pass object as a
function argument.

• If you pass entire object to
function then it is called as
pass-by-value and if only you
pass addresses of object then
it is called as pass-by-
reference.

• obj1.calsum(obj2), in this
function call obj2 is passed by
value and hence the function
prototype will be as follows –
void calsum (class_name o).
This means if we change
variable values of o they will
not affect values in obj2.

• obj1.calsum(obj2), in this
function obj2 is passed by
reference and hence the
function prototype will be as
follows –
void calsum (class_name &o).
This means if we change
variable values of o it will affect
values in obj2.

• Object to Pointers-
obj1.calsum(obj2) will be
passed to function as follows –
void calsum(class_name *o).
This means o will point to the
memory of obj2.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Returning Objects

class maths
{

int no1, sum;
public:
void getdata(int);
void showdata();
maths calsum(maths);

};
void maths :: getdata(int x)
{

no1 = x;
}
void maths :: showdata()
{

cout << "The sum is:" <<
sum;

}

maths maths :: calsum(maths o)
{

maths temp;
temp.sum = no1 + o.no1;
return temp;

}
void main()
{

maths obj, obj1, obj2;
obj.getdata(10);
obj1.getdata(20);
obj2 = obj1.calsum(obj);
obj2.showdata();
getch();

}

• Here obj1 is called as invoking object
and the default memory will be of obj1.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Array of Objects

class student
{

int roll_no;
char name[50], address[50];
public:
void getdata();
void showdata();

};
void student :: getdata()
{

cout << "Enter roll no.: ";
cin >> roll_no;
cout << "Enter name: ";
gets(name);
cout << "Enter address: ";
gets(address);

}

void student :: showdata()
{

cout << "Roll no.: " << roll_no;
cout << "Name: " << name;
cout << "Address: " << address;

}
void main()
{

student s[3]; //array of objects
cout << "Enter data of 3
students: ";
for(int i=0; i<3; i++)
{

s[i].getdata();
}
cout << "The information is: ";
for(int i=0; i<3; i++)
{

s[i].showdata();
}
getch();

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Array of Objects to Functions

class student

{

int roll_no;

char name[50], address[50];

public:

void getdata();

void showdata(student [],
int);

};

void student :: getdata()

{

cout << "Enter roll no.: ";

cin >> roll_no;

cout << "Enter name: ";

gets(name);

cout << "Enter address: ";

gets(address);

}

void student :: showdata(student s[],int n)

{

for(int i=0;i<n;i++)

{

cout << "Roll no.: "<< s[i].roll_no;

cout << "Name: " << s[i].name;

cout << "Address: " << s[i].address;

}

}

void main()

{

student s[3], s1; //array of objects

cout << "Enter data of 3 students: ";

for(int i=0; i<3; i++)

{

s[i].getdata();

}

cout << "The information is: ";

s1.showdata(s,3);

getch();

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Array of Objects to Pointers

class student
{

int roll_no;
char name[50], address[50];
public:
void getdata();
void showdata(student *,
int);

};
void student :: getdata()
{

cout << "Enter roll no.: ";
cin >> roll_no;
cout << "Enter name: ";
gets(name);
cout << "Enter address: ";
gets(address);

}

void student :: showdata(student *s,
int n)

{
for(int i=0;i<n;i++,s++)
{

cout<<"Roll no.: "<<s->roll_no;
cout<<"Name: "<< s->name;
cout<<"Address: "<< s->address;

}
}
void main()
{

student s[3], s1; //array of objects
cout<<"Enter data of 3 students: ";
for(int i=0; i<3; i++)
{

s[i].getdata();
}
cout << "The information is: ";
s1.showdata(s,3);
getch();

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Function Overloading

• You can define more than two
functions having same name
as long as their parameters are
different.

• Function overloading is one of
the ways that C++ supports
polymorphism.

• The type and/or number of
arguments determine which
overloaded version is to be
called.

• C++ does not allow overloaded
functions with same
parameters but different return
types.

class maths
{

void sum()
{

……

}
int sum(int x, int y)
{

…….

}
void sum(int x)
{

…….

}
void sum(int x, float y)
{

……

}
};

void sum(int x, int y)
{

……

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Constructors

• In C++ you can initialize the
class variables at the time of
creation of objects using
constructors.

• Constructor has same
name as the class in which
it resides and syntactically
similar to a method.

• Constructors do not have
return type nor they are
void.

• The constructor is
automatically called
immediately after the object
is created.

class demo
{

int a, b;
public:
demo()
{

a = 10; b = 20;
}
void showdata()
{

cout << "A=" << a << "B=" << b;
}

};

void main()
{

demo obj1;
obj1.showdata();
getch();

}

Constructor will get automatically
called when the object obj1 is created

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Parameterized Constructors

• In the example seen
before variables of all the
objects created will get
initialized to 10 and 20. If
we want to initialize them
to different values you
have to use
parameterized
constructors.

• The constructors with
arguments is called as
parameterized
constructors.

class demo
{

int a, b;
public:
demo(int x, int y);

//parameterized
…………….; constructor
…………….;

};

demo :: demo (int x, int y)
{

a = x; b = y;
}

• You can call the parameterized
constructor implicitly or explicitly

• Implicit call: demo obj(10, 20);

• Explicit call: demo obj = demo(10,20);

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Constructor Overloading

class maths

{

int x, y;

public:

maths()

{ x = 0; y = 0}

maths(int a, int b)

{ x = a; y = b;}

maths(maths &o)

{ x = o.x, y = o.y}

};

• In the above class we have overloaded
three constructors.

• maths obj declaration will invoke first
constructor where x and y will be
initialized to 0.

• maths obj1(100, 200) will invoke
second constructor where x and y will
be initialized to 100 & 200 respectively.

• maths obj2(obj1) will invoke third
constructor and will copy the values of
obj1 to obj2. Hence it is called as copy
constructor.

• Some other examples of copy
constructor –

• maths obj2 = obj1 will create a new
object obj2 and same time will initialize
the values to that of obj1.

• obj2 = obj1 will not invoke copy
constructor but due to = operator
overloaded it will initialize the values
of obj2 to obj1 member by member.

• The parameter to a constructor can be
any type except the class it belongs to.

• Hence maths(maths o) will not work
but maths(maths &o) will work
because we have passed the
reference of it’s own class.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Destructor

• Destructor is used to
destroy the objects
created by constructors.

• Same as constructor
destructor name is also
same as that of class
name preceded by tilde
(~) character.

• Destructor does not take
any argument nor returns
any value.

• Destructor is
automatically invoked by
the compiler on exit of a
program or a block of
code in which the objects
are declared.

• Destructor releases the
memory for further use.

e.g. ~student () {
cout<<“\nIn Destructor”;

}

Destructor for class student.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

this Pointer

This pointer is used to represent an object that
invokes a member function.

This pointer points to the object on which a
function is called e.g. obj.sum() will set this
pointer to the address of object obj.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Program with ambiguity issue

#include<iostream.h>

#include<conio.h>

class maths

{

int a, b;

maths(int a, int b)

{

a=a; b=b; //both a & b
are locals

}

void display()

{

cout << a << ", " <<
b;

}

};

void main()

{

maths obj1(10, 20);

clrscr();

obj1.display();

getch();

}

• Here we are expecting the output
would be 10, 20. But the output would
be some garbage values. Because a
and b are the local variables. Hence
the statement a = a and b = b assigns
the values of local variables a and b to
itself.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Use of this keyword

#include<iostream.h>
#include<conio.h>

class maths
{

int a, b;
maths(int a, int b)
{

this->a = a;
this->b = b;

}
void display()
{

cout << a << ", "
<< b;
}

};

int main()

{

maths obj1(10, 20);

clrscr();

obj1.display();

getch();

return 0;

}

Output : -

10 , 20

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

new Keyword (Dynamic Memory Allocation)

Allocating memory to the objects at the time of
their construction is called as Dynamic Memory
Allocation. The memory is allocated with the
help of new keyword.

Dynamic memory allocation enables
programmer to allocate right amount of memory
when the objects are not of the same size.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Use of new keyword

#include<iostream.h>
#include<string.h>
class String
{

char *name;
int length;
public:
String()
{

length = 0;
name = new char [length

+ 1];
}
String(char *s)
{

length = strlen(s);
name = new char [length

+ 1];
strcpy(name, s);

}

void display()
{

cout << name << "\n";
}
void join (String &, String
&);

};

void String :: join (String &a,
String &b)

{
length = strlen(a.name) +
strlen(b.name);
delete name;
name = new char [length + 1];
strcpy(name, a.name);
strcat(name, b.name);

}

continued on next slide….

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Use of new keyword

void main()
{

char *first = "Parag ";
String name1(first),
name2("Sarang "),
name3("Pooja "), s1, s2;
s1.join(name1, name2);
s2.join(s1, name3);
name1.display();
name2.display();
name3.display();
s1.display();
s2.display();
getch();

}

The output of the program is –

Parag

Sarang

Pooja

ParagSarang

ParagSarangPooja

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Static Data Members

• We can declare any data
member as Static.

• Static data member is
initialized to zero when the
first object of the class is
created. No other
initialization is permitted.

• When we define a data
member as Static only one
copy of that member is
created for all the objects.

• It is visible only within the
class, but its lifetime is for
the entire program.

class stat

{

int no,

static int scount; //Static
member
Variable

public:

void getdata(int x)

{

no= x;

scount++;

}

void getcount()

{

cout<<"Count: "<<scount;

}

};

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Static Data Members
int stat :: scount;
void main()
{

stat a, b, c;
a.getcount();
b.getcount();
c.getcount();
a.getdata(100);
cout << "After
initialization: " << "\n";
a.getcount();
cout << "After
initialization : " << "\n";
b.getdata(200);
b.getcount();
c.getdata(300);
cout << "After
initialization : " << "\n";
c.getcount();
getch();

}

The output of the program is –

Count: 0

Count: 0

Count: 0

After initialization:

Count: 1

After initialization:

Count: 2

After initialization:

Count: 3

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Static Member Functions

• We can declare static
member functions as we
define a data member as
static.

• A static function can
access other static
member functions or
static data members.

• Static functions are called
using the class name and
cannot be called using
the objects of the class.

class stat1

{

int no;

static int scount;

public:

void setno()

{

no = ++scount;

}

void showno()

{

cout << "\nObject
Number:" << no;

}

continued on next slide….

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

static void showcount()

{

cout<<"\nCount: " <<
scount;

}

}; //end of class
int stat1 :: scount;

int main()

{

stat1 s1, s2;

s1.setno();

s2.setno();

stat :: showcount();
//calling static function

stat1 s3;

s3.setno();

stat :: showcount();

s1.showno();

s2.showno();

s3.showno();

getch();

} // end of main

Output:
Count: 2
Count: 3
Object Number: 1
Object Number: 2
Object Number: 3

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Friend Functions

• The private members of a
class cannot be accessed
from outside the class.

• There might be situation in
which the two classes
need to share a particular
function, we need to make
that function as a friend
function of both the class.

• So using friend function we
can access private data of
both the classes.

class ABC
{

………. ……….

public:
………. ……….

friend void name(ABC);
};

• You cannot call a friend
function using an object
of a class, it needs to be
called as normal function.

• You need to pass object
as an argument.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

class calMath

{

int a, b;

public:

void setdata(int x, int y)

{

a = x;

b = y;

}

friend float mean(calMath);

};

float mean (calMath m)

{

float x = (m.a + m.b) / 2.0;

return x;

}

int main()

{

calMath mobj;

mobj.setdata(22,19);

cout<<“\nMean = “<<mean(mobj);

getch();

}

Output:
Mean = 20.5

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Friend Function to Two Classes

class PQR; //forward declaration
class LMN
{

int a;
public:
void setdata(int x)
{

a = x;
}
friend void max(LMN, PQR);

};
class PQR
{

int b;
public:
void setvalue(int y)
{

b = y;
}
friend void max(LMN, PQR);

};

void max(LMN l, PQR p)
{

if(l.a > p.b)
cout<<“Max No. = “<<l.a;

else
cout<<“Max No. = “<<p.b;

}
void main()
{

LMN lmn;
lmn.setdata(100);
PQR pqr;
pqr.setvalue(200);
max(lmn, pqr);
getch();

}

Output:
Max No. = 200

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Operator Overloading

• In C++ you can give
special meaning to the
operators. This process is
called as operator
overloading.

• In C++ all the operators
except the following
operators can be
overloaded –
– Class member operators (., .*)
– Scope resolution Operator (::)
– Size operator (sizeof)
– Conditional operators (?:)

return_type class_name ::
operator (op-argslist)
{

…………….;

…………….;

}

• Operator functions must be either
member functions (non-static) or
friend functions.

• Friend function will only have one
argument for unary operators and
two for binary operators.

• Member function has no
arguments for unary operators
and only one for binary operators.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Overloading Unary Operators

class opunary

{

int no;

public:

void getdata(int);

void showdata();

void operator –();

};

void opunary :: getdata (int a)

{no = a; }

void opunary :: showdata()

{cout << no; }

void opunary :: operator – ()

{no = -no; }

void main()

{

opunary obj;

obj.getdata(10);

cout << “Value is: “;

obj.showdata();

-obj;

cout << “Value is: “;

obj.showdata();

getch();

}

Output : -

Value is: 10

Value is: -10

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Overloading Binary Operators
class complex
{

float real, img;
public:
complex(){ }
complex(float r, float i)
{

real = r; img = i;
}
complex operator +(complex);
void display();

};
complex complex :: operator
+(complex c)
{

complex temp;
temp.real = real + c.real;
temp.img = img + c.img;
return temp;

}

void complex :: display()
{
cout<<real<<"+”<<img<<“i”;

}
void main()
{

complex c1, c2, c3;
c1 = complex(3.2, 1.8);
c2 = complex(2.3, 5.3);
c3 = c1 + c2;
cout << "C1 = ";
c1.display();
cout << "C2 = ";
c2.display();
cout << "C3 = ";
c3.display(); getch();

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Inheritance

• Inheritance is a feature of
OOP which enables user
for reusability of the code.

• You can create new
classes which can use
properties of existing
classes using inheritance
and we can add new
features in derived class.

• In inheritance the old
class is called as base
class and the new class
is called as derived class.

• The derived class inherits
some or all features from
base class.

• One class can be derived
from many base classes
or many classes can be
derived from one base
class.

class derived : visibility_mode
base {
……………;

……………;

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Types of Inheritance

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Deriving a Class from Base Class

Default Private Derivation:
class derived : base
{

members of derived class;
}
Private Derivation:
class derived : private base
{

members of derived class;
}
Public Derivation:
class derived : public base
{

members of derived class;
}

• The : indicates derivation of
derived from base class. Private
or Public indicate the visibility of
the features of base class into
derived class.

• If privately derived, the public
members of base class become
private members of derived class
and if publically derived then
public members of base class
become public members of
derived class. In private derivation
we cannot access public member
functions of base class from
derived class object but in public
derivation we can access public
member functions of base class
from derived class object.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Protected Access Specifier

• If we require the private data to
be visible in the derived class
then C++ provides the protected
visibility modifier.

• Protected member inherited in
public mode becomes protected
in derived class, hence it is
accessible to the member
function of derived class and
ready for further inheritance.

• Protected member inherited in
private mode becomes private in
derived class, hence it is
accessible to the member
functions of derived class but
not available for further
inheritance.

class ABC

{

private: //optional

……………; //visible to member

……………;//functions within the class

protected:

……………; //visible to member
functions

……………; //of its own and derived
class

public:

……………; //visible all the functions

……………; //in the program

};

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Function Overriding

• When we define a function with
same name and arguments in
both base class and derived class,
then the function is called as
overridden function and this
process is called as function
overriding.

• Function overriding enables
programmer to change the
behavior of any base class
functionality in the derived class.

• When you call the overridden
function by child object the child
version is called and when you
call the overridden using base
object the base version is called.

class A

{

……………;

public:

void getdata(int);

};

Class B : public A

{

……………;

public:

// overridden function
void getdata(int);

void showdata();

};

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Ambiguity Resolution in Inheritance
class ABC
{
public:

void display(void)
{
cout<<"I am in Class

ABC";
}

};
class XYZ
{
public:

void display(void)
{
cout<<"I am in Class

XYZ";
}

};

class LMN : public ABC, public XYZ
{
public:

void show(void)
{
cout<<"I am in class LMN";

}
};
int main()
{

LMN o;
o.display(); //will give ambiguity error
o.ABC::display(); //display of ABC

called
o.XYZ::display(); //display of XYZ

called
p.show();
getch();

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Virtual Base Class

• In above inheritance, B and C
classes inherit features of A
and then as D is derived from
B and C, there is an
ambiguity error because the
compiler does not
understand how to pass
features of Class A to Class
D either using B class or C
Class.

• So to remove the ambiguity
you need to make the class B
and class C as virtual base
classes.

Class B : public virtual A
Class C : virtual public A

• When the class is made as
virtual base class, the compiler
takes necessary care to pass
only one copy of the
members in inherited class
regardless of many inheritance
paths exist between the virtual
base class and derived class.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Virtual Base Class - Example

class student

{

protected:

int roll_number;

public:

void get_number(int a)

{

roll_number = a;

}

void put_number(void)

{

cout <<"Roll Number:
"<<roll_number << "\n";

}

};

class test : public virtual student

{

protected:

float part1, part2;

public:

void get_marks(float x, float y)

{

part1 = x;

part2 = y;

}

void put_marks(void)

{

cout<<"Markts Obtained:
"<<"\n"<<"Part1 = "<<part1<<
"\n"<<"Part2 = "<<part2<< "\n";

}

};

continued on next slide….

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

class sports : virtual public
student
{
protected:

float score;
public:

void get_score(float s)
{ score = s; }
void put_score(void)
{

cout << "Sports Marks = "
<< score << "\n";

}
};
class result : public test,
public sports
{

float total;
public:

void display(void);
};

void result :: display(void)
{

total = part1+part2+score;
put_number();
put_marks();
put_score();
cout<<"Total Score: "<<total

<<"\n";
}
void main()
{

result student1;
student1.get_number(10);
student1.get_marks(75.25,82.90);
student1.get_score(92.80);
student1.display();
getch();

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Behaviour of Constructors in Derived Class

• When we create the object
of derived class the default
constructor of base class
gets called and then default
constructor of derived class
gets called.

• When you create object of
derived class with
parameters, still default
constructor of base class
gets called and
parameterized constructor
of child class gets called.

• If base class contains
constructor more than
one argument, then it is
compulsory for the
derived class to have a
constructor and pass the
arguments to base class
constructor.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Constructors in Single Inheritance (Example)

class base
{

int a;
public:

base()
{

cout << "I am into base's
default constructor";

}
base(int x)
{

cout << "I am into base's
parameterized constructor";

a = x;
}
void show_a()
{

cout << "\nThe value of a
is: " << a;

}
};

class derived : public base
{

int b;
public:

derived()
{

cout << "\nI am in child's
default constructor";

}
derived(int y, int z):base(y)
{

cout << "\nI am in child's
parameterized constructor";

b = z;
}
void show_b()
{

cout << "\nThe value of b
is: " << b;

}
};

continued on next slide….

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

void main()

{

derived d;

derived d1(10,20);

d.show_b();

d.show_a();

getch();

}

Output:
I am into base's default constructor
I am into child's default constructor
I am into base's parameterized
constructor
I am into child's parameterized
constructor
The value of b is: 20
The value of a is: 10

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Constructors in Multilevel Inheritance (Example)

class A

{

int a;

public:

A()

{

cout << "Into Class A's
default constructor";

}

A(int x)

{

a = x;

cout << "\nInto Class A's
parameterized constructor";

cout << "\nA = " << a;

}

};

class B:public A
{

int b;
public:

B()
{

cout << "\nInto Class B's
default constructor";

}
B(int l, int m):A(l)
{

b = m;
cout << "\nIn Class B's

parameterized constructor";
cout << "\nB = " << b;

}
};

continued on next slide….

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

class C:public B

{

int c;

public:

C()

{

cout << "\nInto Class C's
default constructor";

}

C(int p,int q, int r):B(p,q)

{

c = r;

cout << "\nInto Class C's
parameterized constructor";

cout << "\nC = " << c;

}

};

void main()

{

C c;

C c1(10,20,30);

getch();

}

Output:
Into Class A's default constructor
Into Class B's default constructor
Into Class C's default constructor

Into Class A's parameterized constructor
A = 10
Into Class B's parameterized constructor
B = 20
Into Class C's parameterized constructor
C = 30

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Abstract Class

• Abstract class is designed
to act as base class for
other classes.

• It is a design concept in a
program development and
provides a base upon which
other classes may be built.

• You cannot create object of
an Abstract class.

• Abstract class is used only
to derive other child
classes.

• A class with a Pure Virtual
Function is called as an
Abstract Class

Class A

{

int a,b;

public:

//pure virtual func
void add()=0;

void show();

void get();

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

ios

streambuf

ostreamistream

iostream

iostream_withassign ostream_withassignistream_withassign

input output

pointer

Console I/O Operations

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

put() and get() Functions

• get() function is defined
in the istream class in
order to handle single
character inputs.

• It can be implemented as:
– cin.get(ch);

The above method calls the get()
function with ch as a parameter.

– ch=cin.get();

The above method calls the get()
function without a parameter
returning the value to the variable
ch.

• put() function is defined
in the class ostream in
order to handle single
character outputs.

• It can be implemented as:
– cout.put(‘x’);

The above method calls the put
function with a character value ‘x’

as a parameter.
– cout.put(ch);

The above method calls the put()
function with a variable ch.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

get() and put() function

void main()

{

char ch;

cout<<“Enter character: “;

cin.get(ch);

cout<<“You entered: “<<ch;

getch();

}

Output:
Enter character: h
You entered: h

void main()

{

char ch;

cout<<“Enter character: “;

cin.get(ch);

cout<<“You entered: “;

cout.put(ch);

getch();

}

Output:
Enter character: h
You entered: h

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

getline() and write() Functions

• getline() is a function
defined to handle
strings in the istream
class.

• It takes two
parameters:
– A string variable that

takes the string
– Number of characters

to be accepted as a
string (line).

• write() is a similar
function used to write
strings onto files. It is
defined in the
ostream class.

• It takes two
parameters:
– A string that is to be

displayed on the
console

– Number of characters
to be written.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

getline() and write() Functions

void main()

{

char ch[20];

cout<<“Enter a string: “;

cin.getline(ch,19);

cout<<“You entered: “<<ch;

getch();

}

Output:
Enter a string: Envision
You entered: Envision

void main()

{

char ch[20];

cout<<“Enter a string: “;

cin.getline(ch,19);

cout<<“You entered: “;

cout.write(ch,19);

getch();

}

Output:
Enter a string: Envision
You entered: Envision

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Formatted Console I/O Operators

• Unformatted console
operators are used in
order to manipulate or
interpret the input and
output.

• On the other hand,
formatted operators are
used in order to give
formatting to the output
of your program.

• These operators are
used just to give a
formatting to the input /
output. These cannot
be used as tools to I/O.

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

ios Format Functions

Function Description

width() To specify the required field size for
displaying an output value

precision() To specify the number of digits to be
displayed after the decimal point of a
float value

fill() To specify a character that is used to
fill the unused portion of a field

setf() To specify format flags that can control
the form of output display

unsetf() To clear the flags specified

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Defining Field Width: width()

• We can use the
width() function to
define the width of a
field necessary for the
output of an item.
Since it is defined
within the class
ostream, we call it as:
cout.width(w);

• e.g.:
cout.width(5);

cout << 543 << 12 << “\n”;

cout.width(5);

cout << 543;

cout.width(5);

cout << 12;

345 21

345 21

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Setting precision: precision()

• By default, the
floating point values
are printed with six
digits after the
decimal. However, we
can specify the
number of digits to be
displayed after the
decimal through
precision();

• e.g.:
cout.precision(3);

cout << 3.14159;

cout << 2.50062;

• Output:

3.142
2.5 (no trailing zeros)

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Filling & Padding: fill()

• We have been
printing values using
larger spaces than
required. These are
generally blank
spaces. With the help
of fill(), we can fill the
unused positions with
the desired character.

• e.g.:
cout.fill(‘*’);

cout.width(5);

cout << 23;

• Output:

* * 32*

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Formatting flags, bit-fields & setf()

• When we use width(),
precision() and fill()
functions, the data is put
by default in right
justification.

• We can manage this
using this formatting.

• The setf() is a member
function of the ios class
and can set various flags
in order to give proper
formatting.

cout.setf(arg1, arg2);

• Here, arg1 is one of the
formatting flags defined in
the class ios. It specifies
the format action required
for the output.

• Also present is, arg2. This
specifies which group does
the formatting flag belong
to. It is called as the
bit-field

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Format Required Flag (arg1) Bit-field (arg2)

Left-justification ios::left ios::adjustfield

Right-justification ios::right ios::adjustfield

padding after sign or
base indicator

ios::internal ios::adjustfield

Scientific notation ios::scientific ios::floatfield

fixed point notation ios::fixed ios::floatfield

decimal base ios::doc ios::basefield

octal base ios::oct ios::basefield

hexadecimal base ios::hex ios::basefield

…continued

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Working on Files

ios

streambuf ostreamistream

iostream

iostream_withassign ostream_withassignistream_withassign

fstream base

filebuf

io
st

re
am

 fi
le

fs
tr

ea
m

 fi
le

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Opening and Closing a File

• There are input and output
stream classes for files similar
to those for consoles.

• These are ifstream and
ofstream respectively.

• To open a file in WRITE
mode, we need to an object of
the output stream.

• Thus,
ofstream outfile(“results.txt”);

is the desired statement.

• Similarly, to open a file in
READ mode, the syntax
is,
ifstream infile(“results.txt”);

• A file can also be opened
through a function,
infile.open(“results.txt”);

• To close the file, we
simply call the close
function through the
object:
infile.close();

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Writing and Reading from a File

• Writing to a file is
done through the
overloaded operator
(<<).

• e.g.:
ofstream outf;

outf.open(“results.txt”);

outf << “Hello World!”;

• Similarly, reading is
done through the
overloaded operator
(>>).

• e.g.:
ifstream inf;

char name[30];

inf.open(“results.txt”);

inf >> name;

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

The getline() Function and EOF character

• File contents can also be
read through a member
function getline().

• It takes 2 parameters:
– a string
– number of characters

ifstream inf;

char name[30];

inf.open(“results.txt”);

inf.getline(name,20);

getch();

• When reading content
from the file, we need to
make sure that the
End-of-File has not been
encountered.

• To make sure we get this,
a member function eof() is
called to check if the end
of file is encountered.

• The eof() returns a 0 if
false.

ifstream inf(“results.txt”);

if(inf.eof()) { exit(0); }

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Exception Handling

• The problems which
are not syntax errors
nor logical errors are
called as Exceptions.

• When these are
encountered, the
program terminates
unexpectedly.

• To avoid this, we use
exception handling.

• Exception
occurred

• Exception thrown

• Exception caught
• Exception

processed

Try Block

Catch Block

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Exception Handling

 try block throwing an exception
 Invoking function throwing an exception
 Multiple catch statements
 catch-all
 Rethrowing an exception

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Templates

 Templates is a feature in C++ which enables us to define
generic classes and functions and thus provides support
for generic programming.

 A template can be used to create a family of classes or
functions.

 We can template for both:
 Function Template
 Class Template

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Function Templates

template <class T>

void swap(T &x, T &y)

{

T temp=x;

x=y;

y=temp;

}

• The definition above
essentially declares a set of
overloaded functions, one for
each data type. We can invoke
this swap function like an
ordinary function

e.g.:
template <class T>

void swap(T &x, T &y)

{

T temp=x;

x=y;

y=temp;

}

void func(int m, int n,
char ch, char pq)

{

swap(m,n);

swap(ch,pq);

}

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

Class Templates

template <class T>

class vector

{

T vect;

int size;

public:

vector() { }

vector(T a)

{ vect=a; }

};

• The class above is defined
as a generic class and can
take any data type
specified.

• In order to define an
object of the said
class with the variable
‘vect’ as an integer,
we write,
vector <int> v1;

• Similarly, for a
character, we say,
vector <char> v2;

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

END OF BASICS IN C++

 Thus, the basics of C++ programming ends here.
 We hope you are satisfied with the theory provided.
 You may get back to us for advance C++ concepts like

Standard Template Libraries (STLs) and more.
 Feel free to share, distribute or use it in any form you

wish to. IT IS FOR YOU. 

http://www.ecti.co.in/

www.ecti.co.in

C++ Programming

For advance C++ programming course or for any doubts in
this tutorial, please contact us on any of the following
details:

Call us on: 02065000419 / 02065111419
E-mail us at: prog@ecti.co.in
Web URL: www.ecti.co.in

For any suggestions of complaints regarding the theory or
programs in the tutorial, write us at:
complaints@ecti.co.in

END OF BASICS IN C++

http://www.ecti.co.in/
mailto:info@ecti.co.in
http://www.ecti.co.in/
mailto:complaints@ecti.co.in

